
Engineering Mechanics 

FOURTH EDITION 



Engineering Mechanics 
STATICS 

4e 

Cap)"f11111 2011 ~ &4 ....... AIIIlcN• ~ )by.atbeoapt'd.........,...t «dupbokd • •"'* or • patL Owtod«ttW n,.,._ --.t .... l*t)'~ _.)'bt ~d t...lhtcBool. ~c.(]qpa{a). 
.:...u& lilt\_.._...,_..._..,.~~ doe:ftao~-*'tU!Iy atl«.t dx"'-.:nll ~c:pc!IIIL'!Iitt. Cc:uppe ~~-•-cN•~ .....,,,..,~at •)'._, ~~~-n:£11b.~nquut: d. 



Copyrigbt 2017 Ct-!li2£e Uiind!lg. All Right$ Rl.'Si'n'td. J.by not bt OOp~ killliX'CL or du.pliall:d in wb.lle C'll in fW'. Du~ to eh::ctronk rigbb • .!lOnlo:'" tlli.rd party euntena mily be !tupprtikd (rom tbt eBook iitld/o.'Jr e0..llpter($). 
Editori~ n."Yiew b:as dell!mOO tb2t 2ny suppresllotdcot*'nt does llo.'II IWitedaUy :df«1 the ov.niJ leamins exptrie~. c~njyl.ge Leaming rtstn>t:~ tbe dgbt to moo...e ._.diJiona.l e<lnlftlt at any tin~ ir $~~t rigbtt rt:$llktiom require it. 



Engineering Mechanics 
STATICS 

4e 

Andrew Pytel 
The Pennsylvania State University 

Jaan Kiusalaas 
The Pennsylvania State University 

CENGAGE 
Learning· 

Australia • Canada • Mexico • Singapore • Spain • United Kingdom • United States 

Cap)"f11111 2011 ~ &4 ....... AIIIlcN• ~ )by.atbeoapt'd.........,...t «dupbokd • •"'* or • patL Owtod«ttW n,.,._ --.t .... l*t)'~ _.)'bt ~d t...lhtcBool. ~c.(]qpa{a). 
.:...u& lilt\_.._...,_..._..,.~~ doe:ftao~-*'tU!Iy atl«.t dx"'-.:nll ~c:pc!IIIL'!Iitt. Cc:uppe ~~-•-cN•~ .....,,,..,~at •)'._, ~~~-n:£11b.~nquut: d. 



This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial 
review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to 

remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous 
editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by 

ISBN#, author, title, or keyword for materials in your areas of interest. 

Important Notice: Media content referenced within the product description or the product text may not be available in the eBook version. 

Copyrigbt2017 Ct-!li2£e Uiindllg. All Rights Rl.'Si'n'td. J.by clOt bt OOp~ k illliX'd.. or du.pliall:d in wb.llc C'll in fW'. Du~ 10 eh::ctronk rigbb . .!lOnlo:'" llli.nt party euntena mily be !tupprtikd (rom tbt dlook :itld/o.'Jr e0..llptef(!l.). 
Editori~ n."Yiew b:as dell!mOO tb212ny suppn.·sllotdcot*'nt does not cW!teriaUy :df«1 the ov.niJ leamins exptrie~. c~njyl.ge Leaming li'stn>t:~ lbe dgbl tO moo...e ._.diJiona.l t<lnlftlt at any tin~ irs~~~ rigbtt res:uktiom require it. 



.. 
# ·- CENGAGE 

Learning· 

Engineering Mechanics: Statics, Fourth Edition 

Andrew Pytel and jaan Kiusalaas 

Product Director, Global Engineering: 

Timothy l. Anderson 

Senior Content Developer: Mona Zeftel 

Associate Media Content Developer: 

Ashley Kaupert 

Product Assistant: Teresa Versaggi 

Marketing Manager: Kristin Stine 

Director, Content and Media Production: 
Sharon l. Smith 

Content Project Manager: D. jean Buttram 

Production Service: RPK Editorial Services, Inc. 

Copyeditor: Harlan james 

Proofreader: Warren Hapke 

Indexer: Shelly Gerger-Knecht! 

Compositor: SPi Global 

Senior Art Director: Michelle Kunkler 

Cover and Internal Designer: Lou Ann Thesing 

Cover Image: Mlenny Photography/ 
Getty I mages 

Features: Chapter Openers, Sample Problems, etc.: 
Brushed Aluminum Metal Plate: ©iStock.com/ 
rafal_olechowski 

Intel lectual Property 

Analyst: Christine Myaskovsky 

Project Manager: Sarah Shainwald 

Text and Image Permissions Researcher: 
Kristiina Paul 

Senior Manufacturing Planner: Doug Wilke 

Printed in the United States of America 
Print Number: 01 Print Year: 2015 

© 2017, 2010 Cengage Learning® 

WCN: 02 · 200-203 

ALL RIGHTS RESERVED. No part of this work covered by the 

copyright herein may be reproduced, t ransmi tted, stored, or used 

in any form or by any means graphic, electronic, or mechanical, 
including but not limited to photocopying, recording, scanning, 

digitizing, taping, Web distribution, information networks, or 

in formation storage and retrieval systems, except as permitted 
under Section 107 or 108 of the 1976 United States Copyright Act, 

without the prior written permission of the publisher. 

For product information and technology assistance, contact us at 

Cengage Learning Customer & Sales Support, 1·800·354·9706. 

For permission to use material from this text or product, 

submit all requests online at www.cengage.com/permissions. 

Further permissions questions can be emailed to 

permissionrequest@cengage.com. 

Library of Congress Control Number: 2015937336 

ISBN-13: 978·1· 305-50160-7 

Cengage Learning 

20 Channel Center Street 

Boston, MA 02210 

USA 

Cengage Learning is a leading provider of customized learning 
solutions with employees residing in nearly 40 different countries 

and sales in more than 125 countries around the world. Find your 

local representative at www.cengage.com. 

Cengage Learning products are represented in Canada by Nelson 
Education Ltd. 

To learn more about Cengage Learning Solutions, visit 

www.cengage.com/engineering. 

Purchase any of our products at your local college store or at our 
preferred online store www.cengagebrain.com. 

Unless otherwise noted, all items© Cengage Learning. 

MATLAB is a registered trademark ofThe MathWorks, Inc., 4 Apple 
Hill Drive, Natick, MA. 

Copyrigbt 2017 Ct-!li2£e Uiindllg. All Rights Rl.'Si'n'td. J.by clOt bt OOp~ k illliX'd.. or du.pliall:d in wb.llc C'll in fW'. Du~ 10 eh::ctronk rigbb • .!lOnlo:'" llli.nt party euntena mily be !tupprtikd (rom tbt dlook :itld/o.'Jr e0..llptef(!l.). 
Editori~ n."Yiew b:as dell!mOO tb212ny suppn.·sllotdcot*'nt does not cW!teriaUy :df«1 the ov.niJ leamins exptrie~. c~njyl.ge Leaming li'stn>t:~ lbe dgbl tO moo...e ._.diJiona.l t<lnlftlt at any tin~ irs~~~ rigbtt res:uktiom require it. 



To Jean, Leslie, Lori, John, Nicholas 

and 

To Judy, Nicholas, Jennifer, Timothy 

Copyrigbt 2017 Ct-!li2£e Uiindllg. All Rights Rl.'Si'n'td. J.by not bt OOp~ killliX'd.. or du.pliall:d in wb.llc C'll in fW'. Du~ 10 eh::ctronk rigbb • .!lOnlo:'" llli.nt party euntena mily be !tupprtikd (rom tbt dlook :itld/o.'Jr e0..llptef(!l.). 
Editori~ n."Yiew b:as dell!mOO tb212ny suppn.·sllotdcot*'nt does nOI IWitedaUy :df«1 the ov.niJ leamins exptrie~. c~njyl.ge Leaming li'stn>t:~ lbe dgbl tO moo...e ._.diJiona.l t<lnlftlt at any tin~ irs~~~ rigbtt res:uktiom require it. 



Copyrigbt 2017 Ct-!li2£e Uiind!lg. All Right$ Rl.'Si'n'td. J.by not bt OOp~ killliX'CL or du.pliall:d in wb.lle C'll in fW'. Du~ to eh::ctronk rigbb • .!lOnlo:'" tlli.rd party euntena mily be !tupprtikd (rom tbt eBook iitld/o.'Jr e0..llpter($). 
Editori~ n."Yiew b:as dell!mOO tb2t 2ny suppresllotdcot*'nt does llo.'II IWitedaUy :df«1 the ov.niJ leamins exptrie~. c~njyl.ge Leaming rtstn>t:~ tbe dgbt to moo...e ._.diJiona.l e<lnlftlt at any tin~ ir $~~t rigbtt rt:$llktiom require it. 



Preface 

Chapter 1 Introduction to Statics 
1.1 Introduction I 

1.2 Newtonian Mechanics 3 

1.3 Fundamental Properties of Vectors 11 

1.4 Representation of Vectors Using Rectangular Components 19 

1.5 Vector Multiplication 28 

Chapter 2 Basic Operations with Force Systems 
2.1 Introduction 39 

2.2 Equivalence of Vectors 40 

2.3 Force 40 

2.4 Reduction of Concurrent Force Systems 41 

2.5 Moment of a Force about a Point 52 

2.6 Moment of a Force about an Axis 63 

2.7 Couples 76 

2.8 Changing the Line of Action of a Force 89 

Chapter 3 Resultants of Force Systems 
3.1 Introduction 101 

3.2 Reduction of a Force System to a Force and a Couple 102 

3.3 Definition of Resultant 109 

3.4 Resultants of Coplanar Force Systems 110 

3.5 Resultants of Three-Dimensional Systems 120 

3.6 Introduction to Distributed Normal Loads 132 

Chapter 4 Coplanar Equilibrium Analysis 
4.1 Introduction 147 

4.2 Definition of Equilibrium 148 

Part A: Analysis of Single Bodies J48 

4.3 Free-Body Diagram of a Body 148 

4.4 Coplanar Equilibrium Equations 157 

4.5 Writing and Solving Equilibrium Equations 159 

4.6 Equilibrium Analysis for Single-Body Problems 170 

Part B: Analysis of Composite Bodies 183 

4.7 Free-Body Diagrams Involving Internal Reactions 183 

4.8 Equilibrium Analysis of Composite Bodies 194 

X 

1 

39 

101 

147 

Cap)"f11111 2011 ~ &4..._.. AIIIlcN• ~ )by.atbeoapt'd.........,...t «dupbokd • •"'* or • patL Owtod«ttW n,.,._ --.t .... l*t)'~ _.)'bt ~d t...lhtcBool. ~c.(]qpa{a). 
.:...u& lilt\_.._...,_..._..,.~~ doe:ftao~-*'tU!Iy atl«.t dx"'-.:nll ~c:pc!IIIL'!Iitt. Cc:uppe ~~-•-cN•~ .....,,,..,~at •)'._, ~~~-n:£11b.~nquut: d. 

.. 
VII 



... 
VIII CONTENTS 

4.9 Special Cases: Two-Force and Three-Force Bodies 204 

Part C: Analysis of Plane Trusses 218 

4.10 Description of a Truss 218 

4.11 Method of Joints 219 

4.12 Method of Sections 228 

Chapter 5 Three-Dimensional Equilibrium 
5.1 Introduction 241 

5.2 Definition of Equilibrium 242 

5.3 Free-Body Diagrams 242 

5.4 Independent Equilibrium Equations 253 

5.5 Improper Constraints 256 

5.6 Writing and Solving Equilibrium Equations 257 

5.7 Equilibrium Analysis 268 

Chapter 6 Beams and Cables 
*6.1 Introduction 287 

Part A: Beams 288 

*6.2 Internal Force Systems 288 

*6.3 Analysis of Internal Forces 297 

*6.4 Area Method for Drawing V- and M-Diagrams 309 

Part B: Cables 324 

*6.5 Cables under Distributed Loads 324 

*6.6 Cables under Concentrated Loads 336 

Chapter 7 Dry Friction 
7.1 Introduction 347 

7.2 Coulomb's Theory of Dry Friction 348 

7.3 Problem Classification and Analysis 351 

7.4 Impending Tipping 367 

7.5 Angle of Friction; Wedges and Screws 375 

*7.6 Ropes and Flat Belts 385 

*7.7 Disk Friction 392 

*7.8 Rolling Resistance 397 

Chapter 8 Centroids and Distributed Loads 
8.1 Introduction 407 

8.2 Centroids of Plane Areas and Curves 408 

8.3 Centroids of Curved Surfaces, Volumes, and Space Curves 425 

* tndicates optional articles 

2.41 

287 

347 

407 

Copyrigbt2017 Ct-!li2£e Uiindllg. All Rights Rl.'Si'n'td. J.by clOt bt OOp~ k illliX'd.. or du.pliall:d in wb.llc C'll in fW'. Du~ 10 eh::ctronk rigbb . .!lOnlo:'" llli.nt party euntena mily be !tupprtikd (rom tbt dlook :itld/o.'Jr e0..llptef(!l.). 
Editori~ n."Yiew b:as dell!mOO tb212ny suppn.·sllotdcot*'nt does not cW!teriaUy :df«1 the ov.niJ leamins exptrie~. c~njyl.ge Leaming li'stn>t:~ lbe dgbl tO moo...e ._.diJiona.l t<lnlftlt at any tin~ irs~~~ rigbtt res:uktiom require it. 



8.4 Theorems of Pappus-Guldinus 444 

8.5 Center of Gravity and Center of Mass 448 

8.6 Distributed Normal Loads 456 

Chapter9 Moments and Products of Inertia of Areas 
9.1 Introduction 477 

9.2 Moments of Inertia of Areas and Polar Moments of Inertia 478 

9.3 Products of Inertia of Areas 498 

9.4 Transformation Equations and Principal Moments 
of Inertia of Areas 505 

*9.5 Mohr's Circle for Moments and Products of Inertia 514 

Chapter 10 Virtual Work and Potential Energy 
*10.1 Introduction 529 

*10.2 Virtual Displacements 530 

*10.3 Virtual Work 531 

*10.4 Method of Virtual Work 534 

*10.5 Instant Center of Rotation 545 

*10.6 Equilibrium and Stability of Conservative Systems 554 

Appendix A Numerical Integration 
A.1 Introduction 565 

A.2 Trapezoidal Rule 566 

A.3 Simpson's Rule 566 

Appendix B Finding Roots of Functions 
B.1 Introduction 569 

B.2 Newton's Method 569 

B.3 Secant Method 570 

Appendix C Densitjes of Common Materials 

Answers to Even-Numbered Problems 

Index 

471 

529 

565 

569 

573 

575 

583 

CONTENTS 

Copyrigbt2017 Ct-!li2£e Uiindllg. All Rights Rl.'Si'n'td. J.by clOt bt OOp~ killliX'd.. or du.pliall:d in wb.llc C'll in fW'. Du~ 10 eh::ctronk rigbb • .!lOnlo:'" llli.nt party euntena mily be !tupprtikd (rom tbt dlook :itld/o.'Jr e0..llptef(!l.). 
Editori~ n."Yiew b:as dell!mOO tb212ny suppn.·sllotdcot*'nt does notcW!teriaUy :df«1 the ov.niJ leamins exptrie~. c~njyl.ge Leaming li'stn>t:~ lbe dgbl tO moo...e ._.diJiona.l t<lnlftlt at any tin~ irs~~~ rigbtt res:uktiom require it. 

• 
IX 



PREFACE 

x PREFACE 

Statics and dynamics courses form the foundation of engineering mechanics, a 
branch of engineering that is concerned with the behavior of bodies under the 
action of forces. Engineering mechanics plays a fundamental role in civil. mechani­
cal, aerospace and architectural engineering. In addition, the principles of engi­
neering mechanics are often applied in other engineering fields and also in areas 
outside engineering, such as chemistry, physics, medicine and biology. 

The principles of statics and dynamics are relatively few in number. Applica­
tion of these principles to real-world problems requires insight gained from experi­
ence, rather than memorization. Therefore, all engineering textbooks, including 
this one, contain a large number of problems that are to be solved by the student. 
Learning the engineering approach to problem solving is one of the more valuable 
lessons to be learned in an introductory statics course. 

New to This Edition The following proven features have been retained 
from the previous edition with significant updates. 

Sample problems illustrate the concepts introduced in each section. 
The homework problems are balanced between "textbook" problems and 
problems related to practical applications. 
The number of problems using U.S. Customary units and SI units are 
approximately equal. 
The importance of free-body diagrams is emphasized throughout the text. 
Equilibrium analysis is introduced in three separate sections. The first 
section teaches the drawing of free-body diagrams. The second section 
shows bow to derive the equilibrium equations from given free-body 
diagrams. The third section illustrates bow the above skills can be used 
to develop a workable plan for complete analysis of an equilibrium 
problem. 
Whenever applicable, the number of independent equilibrium equations 
is compared to the number of unknowns before the equilibrium equations 
are written. 
Review problems at the end of each chapter are intended to give the stu­
dent additional practice in identifying and solving the various types of 
problems covered in the chapter. 

In addition, approximately 30% of the homework problems are either new or have 
been modified from the previous edition. 

As is typical, our textbook contains more material than can be covered in a three 
credit course in statics. The topics that can be omitted without jeopardizing continuity 
are marked with an asterisk (*). The asterisk is also used to indicate problems that 
require advanced reasoning by the student. The icon representing a computer disk 

denotes problems that require the use of a computer for a complete solution. 
Chapter 1 begins with a review of vectors and vector operations. Chapter 2, 

applies these vector operations to systems of forces , including moments of forces. 
Chapttr 3 follows with a discussion of the resultants of both two-dimensional and 
three-dimensional force systems. Also included in this chapter is an introduction 
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to distributed normal loading which includes the concepts of centroids of volumes 
and areas. Therefore, Chapters 1- 3 provide the mathematical preliminaries neces­
sary for the student to begin a study of equilibrium. 

Chapter 4 considers the equilibrium analysis of coplanar force systems. The 
all-important concept of a free-body diagram is introduced. The construction of 
free-body diagrams is one of the more important skills to be mastered in stat­
ics because free-body diagrams play a role in virtually every engineering appli­
cation that considers the effects of forces upon bodies. This chapter separates 
equilibrium analysis into three fundamental steps: construction of the free-body 
diagram, comparing the number of unknowns with the number of independent 
equilibrium equations, and then writing and solving these equations. The chapter 
concludes with the analysis of plane trusses. 

Chapter 5 presents the analysis of three-dimensional equilibrium. Taken as a 
unit, Chapters 4 and 5 contain a unified and complete discussion of the fundamen­
tal principles of static equilibrium. Therefore, the student is now prepared to apply 
these principles to several special applications of interest to engineers. 

Chapter 6 is an optional chapter that is devoted to analysis of beams and cables. 
These two topics are fundamental to design in a course in mechanics of materi­
als. However, these topics are included in most statics texts because they represent 
interesting applications of equilibrium analysis to practical engineering problems. 

Chapter 7 presents the fundamentals of dry friction Chapter 7. In addition 
to the theory, the methods for analyzing equilibrium problems involving dry fric­
tion are also completely outlined. The analysis of friction problems will provide 
the student with additional practice in drawing free-body diagrams and writing 
equilibrium equations. Also included in this chapter are optional discussions of 
several applications of engineering interest, specifically, ropes and flat belts, disk 
friction and roll ing resistance. 

Chapter 8 discusses centroids and their relationships to simple and complex 
distributed loads are Chapter 8. (Recall that the concept of a centroid was first 
introduced in Chapter 3 and then used throughout equilibrium analysis wherever 
appropriate.) In addition to discussing the centroids of distributed normal loads, 
Chapter 8 also considers the centroids of plane and curved surfaces, and the centers 
of mass and gravity. 

Chapter 9 considers the moment of inertia of area, also known as the second 
moment of area, which plays an important role in the study of the mechanics of 
materials. This subject is traditionally included in a statics text because it belongs 
to the progression of topics: area, first moment of area and second moment of area. 

Chapter 10 shows how to use work-energy principles instead of Newton's Jaws 
to solve equilibrium problems. This is considered an optional chapter because there 
is often not enough time for the subject to be covered in the first statics course. 
However, if time permits, studying Chapter 10 gives the student a useful introduc­
tion and insight into the work-energy method that is often used in dynamics. 

The Sample problems that require numerical solutions have been solved using 
MATLAB®. 

Student's Website Study Guide for Pytel and Kiusalaas's Engineer­
ing Mechanic, Statics, Fourth Edition, J. L. Pytel and A. Pytel. The study guide 
includes self-tests to help the students focus on the important features of each chap­
ter. Guided problems give students an opportunity to work through representative 
problems before attempting to solve the problems in the text. 
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Instructor's Website A detailed Instructor's Solutions Manual and 
Lecwre Note Power Points slides, are available for instructors through a password 
protected Web site at www.cengagebrain.com. 
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Introduction to Statics 

1.1 Introduction 
1.1a What is 

engineering 
mechanics? 

Mechanics is the branch of physics that 

considers the action of forces on bodies 

or fluids that are at rest or in motion. 

Correspondingly, the primary topics of 

mechanics are statics and dynamics. 

Engineering mechanics is the branch of 

engineering that applies the principles of 

mechanics to mechanical design (i.e .• any 

design that must take into account the 

effect of forces). 

Engineering mechanics is an integral 

component of the education of engineers 

whose disciplines are related to the 

mechanical sciences. such as aerospace 

engineering, architectural engineering, civi l 

engineering, and mechanical engineering. 

"' u 
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The Flemish marhemarician and engineer Simon Stevinus 
(1548- 1620) was rhe firsr ro demonstrare resofurion of forces, 
thereby esrablishing rhe foundarion of modem stories. 
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2 CHAPTER 1: Introduction to Statics 

1.1b Problem formulation and the accuracy 
of solutions 

Your mastery of the principles of engineering mechanics will be reflected in 

your ability to formulate and solve problems. Unfortunately, there is no simple 

method for teaching problem-solving skills. Nearly all individuals require a 

considerable amount of practice in solving problems before they begin to 

develop the analytical skills that are so necessary for success in engineering. 

For this reason. a relatively large number of sample problems and homework 

problems are placed at strategic points throughout this text. 

To help you develop an "engineering approach" to problem analysis. you will 

find it instructive to divide your solution for each problem into the following 

parts: 

1. GIVEN: After carefully reading the problem statement. list all the data 

provided. If a figure is required, sketch it neatly and approximately to scale. 

2. FIND: State the information that is to be determined. 

3. SOLUTION: Solve the problem. showing all the steps that you used in the 

analysis. Work neatly so that your work can be followed by others. 

4. VALIDATE: Many times. an invalid solution can be uncovered by simply asking 

yourself, "Does the answer make sense?" 

When reporting your answers. use only as many digits as in the given data. 

For example. suppose that you are required to convert 12 500ft (assumed to 

be accurate to three significant digits) to miles. Using a calculator. you would 

divide 12 500ft by 5280 ft/mi and report the answer as 2.37 mi (three 

significant digits). although the quotient displayed on the calculator would be 

2.367 424 2. Reporting the answer as 2.367 424 2 implies that all eight digits 

are significant. which is. of course. untrue. It is your responsibility to round 

off the answer to the correct number of digits. In this text, you should assume 

that given data are accurate to three significant digits unless stated otherwise. 

For example, a length that is given as 3 ft should be interpreted as 3.00 ft. 

When performing intermediate calculations. a good rule of thumb is to carry 

one more digit than will be reported in the final answer; for example, use 

four-digit intermediate values if the answer is to be significant to three digits. 
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1.2: Newton1an M echan i cs 3 

Furthermore. it is common practice to report four digits if the first digit in an 

answer is 1; for example. use 1.392 rather than 1.39. 

1.2 Newtonian Mechanics 
1.2a Scope of Newtonian mechanics 
In 1687 Sir Isaac Newton (1642- 1727) published his celebrated laws of motion 
in Principia (Mathematical Principles of Natural Philosophy). Without a doubt, 
this work ranks among the most influential scientific books ever published. We 
should not think, however, that its publication immediately established classical 
mechanics. Newton's work on mechanics dealt primarily with celestial mechanics 
and was thus limited to particle motion. Another two hundred or so years elapsed 
before rigid-body dynamics, fluid mechanics, and the mechanics of deformable 
bodies were developed. Each of these areas required new axioms before it could 
assume a usable form. 

Nevertheless, Newton's work is the foundation of classical, or Newtonian, 
mechanics. His efforts have even influenced two other branches of mechanics, 
born at the beginning ofthe twentieth century: relativistic and quantum mechanics. 
Relativistic mechanics addresses phenomena that occur on a cosmic scale (velocities 
approaching the speed of light, strong gravitational fields, etc.). It removes two of the 
most objectionable postulates of Newtonian mechanics: the existence of a fixed or 
inertial reference frame and the assumption that time is an absolute variable, "run­
ning" at the same rate in all parts of the universe. (There is evidence that Newton 
himself was bothered by these two postulates.) Quantum mechanics is concerned 
with particles on the atomic or subatomic scale. It also removes two cherished con­
cepts of classical mechanics: determinism and continuity. Quantum mechanics is 
essentially a probabilistic theory; instead of predicting an event, it determines the 
likelihood that an event will occur. Moreover, according to this theory, the events 
occur in discrete steps (called quanta) rather than in a continuous manner. 

Relativistic and quantum mechanics, however, have by no means invalidated 
the principles of Newtonian mechanics. In the analysis of the motion of bodies 
encountered in our everyday experience, both theories converge on the equations 
of Newtonian mechanics. Thus the more esoteric theories actually reinforce the 
validity of Newton's laws of motion. 

1.2b Newton's laws for particle motion 
Using modern terminology, Newton's laws of particle motion may be stated as 
follows: 

1. If a particle is at rest (or moving with constant velocity in a straight line), it 
will remain at rest (or continue to move with constant velocity in a straight 
line) unless acted upon by a force. 

2. A particle acted upon by a force will accelerate in the direction of the force. 
The magnitude of the acceleration is proportional to the magnitude of the 
force and inversely proportional to the mass of the particle. 

3. For every action, there is an equal and opposite reaction; that is, the forces 
of interaction between two particles are equal in magnitude and oppositely 
directed along the same line of action. 
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Although the first law is simply a special case of the second law, it is customary 
to state the first law separately because of its importance to the subject of statics. 

1.2c Inertial reference frames 
When applying Newton's second law, attention must be paid to the coordinate 
system in which the accelerations are measured. An inercial reference frame (also 
known as a Newtonian or Galilean reference frame) is defined to be any rigid 
coordinate system in which Newton's laws of particle motion relative to that frame 
are valid with an acceptable degree of accuracy. In most design applications used 
on the surface of the earth, an inertial frame can be approximated with sufficient 
accuracy by attaching the coordinate system to the earth. In the study of earth sat­
ellites, a coordinate system attached to the sun usually suffices. For interplanetary 
travel, it is necessary to use coordinate systems attached to the so-called fixed stars. 

It can be shown that any frame that is translating with constant velocity rela­
tive to an inertial frame is itself an inertial frame. It is a common practice to omit 
the word inertial when referring to frames for which Newton's laws obviously apply. 

1.2d Units and dimensions 
The standards of measurement are called uniis. The term dimension refers to the 
type of measurement, regardless of the units used. For example, kilogram and 
feet/second are units, whereas mass and length/time are dimensions. Throughout this 
text we use two standards of measurement: U.S. Customary system and SI system 
(from Systeme internationale d'unites). In the U.S. Customary system the base (fun­
damental) dimensions* are force [FJ, length [L], and time [TJ. The corresponding base 
units are pound (I b), foot (ft), and second (s). The base dimensions in the S/ system are 
mass [M], length [L], and time [T], and the base units are kilogram (kg), meter (m), 
and second (s). All other dimensions or units are combinations of the base quantities. 
For example, the dimension of velocity is [LIT], the units being ft/s, m/s, and so on. 

A system with the base dimensions [FLT] (such as the U.S. Customary sys­
tem) is called a gravitational system. If the base dimensions are [MLT] (as in the 
SI system), the system is known as an absolute system. In each system of measure­
ment, the base units are defined by physically reproducible phenomena or physical 
objects. For example, the second is defined by the duration of a specified number 
of radiation cycles in a certain isotope, the kilogram is defined as the mass of a 
certain block of metal kept near Paris, France, and so on. 

All equations representing physical phenomena must be dimensionally homo­
geneous; that is, each term of an equation must have the same dimension. Otherwise, 
the equation will not make physical sense (it would be meaningless, for example, 
to add a force to a length). Checking equations for dimensional homogeneity is a 
good habit to learn, as it can reveal mistakes made during algebraic manipulations. 

1.2e Mass, force, and weight 
If a force Facts on a particle of mass m, Newton's second law states that 

F = ma 1.1 

•we follow the established cus-tom and en dose dimens-ions in brackets. 

Copyrigbt2017 Ct-!li2£e Uiindllg. All Rights Rl.'Si'n'td. J.by clOt bt OOp~ killliX'd.. or du.pliall:d in wb.llc C'll in fW'. Du~ 10 eh::ctronk rigbb . .!lOnlo:'" llli.nt party euntena mily be !tupprtikd (rom tbt dlook :itld/o.'Jr e0..llptef(!l.). 
Editori~ n."Yiew b:as dell!mOO tb212ny suppn.·sllotdcot*'nt does notcW!teriaUy :df«1 the ov.niJ leamins exptrie~. c~njyl.ge Leaming li'stn>t:~ lbe dgbl tO moo...e ._.diJiona.l t<lnlftlt at any tin~ ir $~~t rigbtt rt:$lrktiom require it. 



1.2: Newton1an M echan i cs 5 

where a is the acceleration vector of the particle. For a gravitational [FLT] 
system, dimensional homogeneity of Eq. (1.1) requires the dimension of mass 
to be 

1.2a 

In the U.S. Customary system, the derived unit of mass is called a slug. A slug is 
defined as the mass that is accelerated at the rate of 1.0 ft/s2 by a force of 1.0 lb. 
Substituting units for dimensions in Eq. (1.2a), we get for the unit of a slug 

1.0 slug = 1.0 Jb • s2 /ft 

For an absolute [ M LT] system of units, dimensional homogeneity of Eq. (1.1) 
yields for the dimension of force 

[F] = [ ~~] 1.2b 

The derived unit of force in the SI system is a newton (N), defined as the force 
that accelerates a 1.0-kg mass at the rate of 1.0 rnls2 • From Eq. (1.2b), we obtain 

1.0 N = 1.0 kg. rnls2 

Weight is the force of gravitation acting on a body. Denoting gravitational 
acceleration (free-fall acceleration of the body) by g, the weight W of a body of 
mass m is given by Newton's second Jaw as 

W = mg 1.3 

Note that mass is a constant property of a body, whereas weight is a variable that 
depends on the local value of g. The gravitational acceleration on the surface of 
the earth is approximately 32.2 ft/s2, or 9.81 rnls2• Thus the mass of a body that 
weighs 1.0 Jb on earth is (1.0 Jb )/(32.2 ft/s2

) = 1132.2 slug. Similarly, if the mass 
of a body is 1.0 kg, its weight on ea.rth is (9.81 rnls2 )(1.0 kg) = 9.81 N. 

At one time, the pound was also used as a unit of mass. The pound mass (Ibm) 
was defined as the mass of a body that weighs 1.0 lb on the surface of the earth. 
Although pound mass is an obsolete unit, it is still used occasionally, giving rise 
to confusion between mass and weight. In this text, we use the pound exclusively 
as a unit of force. 
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1.2f Conversion of units 
A convenient method for converting a measurement from one set of units to 
another is to multiply the measurement by appropriate conversion factors. For 
example, to convert 240 milh into ft/s, we proceed as follows: 

240mi/h = 240_m:l X l.O):{ X 
):{ 3600 s 

5280 ft = 352 ftls 
l.O;nl' 

where the multipliers 1.0 h/3600 s and 5280 ft/1.0 mi are conversion factors. 
Because 1.0 h = 3600 sand 5280 ft = 1.0 mi, we see that each conversion factor 
is dimensionless and of magnitude 1. Therefore, a measurement is unchanged when 
it is multiplied by conversion factors- only its units are altered. Note that it is per­
missible to cancel units during the conversion as if they were algebraic quantities. 

Conversion factors applicable to mechanics are listed inside the front cover 
of the book. 

1.2g Law of gravitation 
In addition to his many other accomplishments, Newton also proposed the law of 
universal gravitation. Consider two particles of mass m A and m 8 that are separated 
by a distance R, as shown in Fig. 1.1. The law of gravitation states that the two 
particles are attracted to each other by forces of magnitude F that act along the 
line connecting the particles, where 

1.4 

The universal gravitational constant G is approximately equal to 3.44 X 

lQ-8 ft4 /(lb • s4 ) , or 6.67 X 10- n m3 /(kg • s2 ). Although this law is valid for 
particles, Newton showed that it is also applicable to spherical bodies, provided 
their masses are distr ibuted uniformly. (When attempting to derive this result, 
Newton was forced to develop calculus.) 

If we let m A = M, (the mass of the earth), m 8 = m (the mass of a body), and 
R = R. (the mean radius of the earth), then Fin Eq. (1.4) will be the weight W of 
the body. Comparing W = GM,mtm with W = mg, we find that g = GM, !R;. 
Of course, adjustments may be necessary in the value of g for some applications in 
order to account for local variation of the gravitational attraction. 

m~ 
A 

Figure 1.1 
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Sample Problem 1.1 

Convert 5000 lb/in.2 to Pa {1 Pa = 1 N/m2 ). 

Solution 
Using the conversion factors listed inside the front cover. we obtain 

5000 lb/in.1 = 5000 Jl)' X 
4·448 N X ( 

3937 )!{ )
2 

_.il(- l.O,lli 1.0 m 

= 34.5 X 106 N/m2 = 34.5 MPa Answer 

Sample Problem 1.2 

The acceleration a of a particle is related to its velocity v, its position coordinate x, 
and time 1 by the equation 

(a) 

where A and B are constants. The dimension of the acceleration is length per 
unit time squared; that is, [a] = [LIP). The dimensions of the other variables 
are [ v] = [LIT]. [x] = [ L ]. and [1] = [T). Derive the dimensions of A and B if 
Eq. (a) is to be dimensionally homogeneous. 

Solution 
For Eq. (a) to be dimensionally homogeneous, the dimension of each term on the 
right-hand side of the equation must be [ L!T2 

], the same as the dimension for a. 
Therefore. the dimension of the fi.rst term on the right-hand side of Eq. (a) becomes 

[Ax3t) = [A)[x3 )[t) = [A][UJ[T] = [~] 
Solving Eq. (b) for the dimension of A, we find 

[A]= [D~[T)[~] = [V~3) 

(b) 

Answer 

Performing a similar dimensional analysis on the second term on the right­
hand side of Eq. (a) gives 

[Bvt2] =[B][v][t 2
] = [BJ[~ ]rPJ = [~] (c) 

Solving Eq. (c) for the dimension of B, we find 

[B)= (~2 ][~][;2] = [;3] Answer 
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Sample Problem 1.3 

8 

Find the gravitational force exerted by the earth on a 70-kg man whose elevation 
above the surface of the earth equals the radius of the earth. The mass and radius 
of the earth are M, = 5.9742 X 1024 kg and R, = 6378 km, respectively. 

Solution 
Consider a body of mass m located at the distance 21?,. from the center of the earth 
(of mass M,). The law of universal gravitation, from Eq. (1.4), states that the body 
is attracted to the earth by the force F given by 

F = G mM, 
(2R, )2 

where G = 6.67 X w - n m3 /(kg· s2 ) is the universal gravitational constant. Sub­
stituting the values for G and the given parameters, the earth's gravitational force 
acting on the 70-kg man is 

F = (6.67 X lQ- 11 )(70)(5.9742 X 1024) = 171.4N 
(2(6378 X 103 )]2 

Answer 
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PROBLEMS 
1.1 A person weighs 30 lb on the moon, where g = 5.32 ft/s2• Determine 
(a) the mass of the person; and (b) the weight of the person on earth. 

1.2 The radius and length of a steel cylinder are 40 mm and 110 mm, respec­
tively. If the mass density of steel is 7850 kg/m3 , determine the weight of the cylin­
der in pounds. 

1.3 Convert the following: (a) 400 lb • ft to kN • m; (b) 6 m/s to mi/h; 
(c) 20 lb/in.2 to kPa; and (d) 500 slug/in. to kg/m. 

1.4 A compact car travels 30 mi on one gallon of gas. Determine the gas mileage 
of the car in km/L. Note that 1 gal = 3.785 L. 

1.5 The kinetic energy of a car of massm. moving with velocity visE = m.v2/2 . 
If m = 1000 kg and v = 6 m/s, compute E in (a) kN · m; and (b) lb · ft. 

1.6 In a certain application, the coordinate a and the position coordinate x of 
a particle are related by 

a= gkx 
w 

where g is the gravitational acceleration, k is a constant, and W is the weight of 
the particle. Show that this equation is dimensionally consistent if the dimension 
of k is [FILJ. 

1.7 When a force Facts on a linear spring, the elongation x of the spring is 
given by F = kx, where k is called the stiffness of the spring. Determine the 
dimension of kin terms of the base dimensions of an absolute [ML1] system of 
units. 

1.8 In some applications dealing with very high speeds, the velocity is measured 
in mm/Jl.s. Convert 8 mm/,us into (a) m/s; and (b) mi/h. 

1.9 A geometry textbook gives the equation of a parabola as y = x2, where x 
andy are measured in inches. How can this equation be dimensionally correct? 

1.10 A differential equation is 

d2y = Ay2 + Byt 
dt 2 

where y represents a distance and 1 is time. Determine the dimensions of constants 
A and B for which the equation will be dimensionally homogeneous. 

1.11 The position coordinate x of a particle is determined by its velocity v and 
the elapsed timet as follows: (a) x = At2 - Bvt; and (b) x = Avte- 8'. Determine 
the dimensions of constants A and B in each case, assuming the expressions to be 
dimensionally correct. 

1.1-1 .21 Proll l ems 9 
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10 CHAPTER 1: Introduction to Statics 

1.12 A differential equation encountered in the vibration of beams is 

where 

x distancemeasuredalongthebeam; [x] = [L] 
y displacement of the beam; [y] = [ L] 

m circularfrequencyofvibration; [m] = [T- 1) 

r massofthebeamperunitlength; [r] = [ML- 1
] 

D bendingrigidityofbeam; [D)= [FU] 

Show that the equation is dimensionally homgeneous. Note that [F) = [ MLT-2 ] 

see Eq. (1.2b). 

1.13 Determine the dimensions of constants A and B for which the following 
equation is dimensionally homogeneous: 

F = Akx2 sin Bx 
k 

where F is a force, xis a distance, and k represents stiffness (dimensions: [ FL- 1 ]). 

1.14 The typical power output of a compact car engine is 110 hp. What is the 
equivalent power in (a) lb • ft/s; and (b) kW? 

1.15 Two 12-kg spheres are placed 400 mm apart. Express the gravitational 
attraction acting between the spheres as a percentage of their weights on earth. 

1.16 Two identical spheres of radius 8 in. and weighing 2 lb on the surface of 
the earth are placed in contact. Find the gravitational attraction between them. 

Use the following data for Problems 1.17- 1.21: mass of earth = 5.9742 X 1024 kg, 
radius of earth = 6378 km, mass of moon = 0.073 483 x 1024 kg, radius of 
moon = 1737 km. 

1.17 A man weighs 170 lb on the surface of the earth. Compute his weight in an 
airplane flying at an elevation of 28 000 ft. 

1.18 Use Eq. (1.4) to show that the weight of an object on the moon is approxi­
mately 116 its weight on earth. 

1.19 Plot the earth's gravitational acceleration g (rnfs2 ) against the height 
h (km) above the surface of the earth. 

1.20 Find the elevation h {km) where the weight of an object is one-tenth its 
weight on the surface of the earth. 

1.21 Calculate the gravitational force between the earth and the moon in new­
tons. The distance between the earth and the moon is 384 x 103 km. 
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1.3 Fundamental Properties of Vectors 
A knowledge of vectors is a prerequisite for the study of statics. In this article, we 
describe the fundamental properties of vectors, with subsequent articles discuss­
ing some of the more important elements of vector algebra. (The calculus of vec­
tors will be introduced as needed in Dynamics.) We assume that you are already 
familiar with vector algebra- our discussion is intended only to be a review of 
the basic concepts. 

The differences between scalar and vector quantities must be understood: 

A scalar is a quantity that has magnitude only. A vector is a quantity that 
possesses magnitude and direction and obeys the parallelogram law for 
addition. 

Because scalars possess only magnitudes, they are real numbers that can be 
positive, negative, or zero. Physical quantities that are scalars include temperature, 
time, and speed. As shown later, force, velocity, and displacement are examples 
of physical quantities that are vectors. The magnitude of a vector is always taken 
to be a nonnegative number. When a vector represents a physical quantity, the 
units of the vector are taken to be the same as the units of its magnitude (pounds, 
meters per second, feet, etc.). 

The algebraic notation used for a scalar quantity must, of course, be different 
from that used for a vector quantity. In this text, we adopt the following conven­
tions: (1) scalars are written as italicized English or Greek letters- for example, 
t for time and (J for angle; (2) vectors are written as boldface letters- for example, 
F for force; and (3) the magnitude of a vector A is denoted as I A I or simply as A 
(italic). 

There is no universal method for indicating vector quantities when writing 
by hand. The more common notations are A, A , A , and A. Unless instructed 
otherwise, you are free to use the convention that you find most comfortable. 
However, it is imperative that you take care to always distinguish between scalars 
and vectors when you write. 

The following summarizes several important properties of vectors. 

Vectors as Directed Line Segments Any vector A can be rep­
resented geometrically as a directed line segment (an arrow), as shown in 
Fig. 1.2(a). The magnitude of A is denoted by A, and the direction of A is 
specified by the sense of the arrow and the angle (J that it makes with a fixed 
reference line. When using graphical methods, the length of the arrow is drawn 
proportional to the magnitude of the vector. Observe that the representation 
shown in Fig. 1.2(a) is complete because both the magnitude and direction of 
the vector are indicated. In some instances, it is also convenient to use the 
representation shown in Fig. 1.2(b), where the vector character of A is given 

A 

)8 8 

l Fixed reference line J 
(a) (b) 

Figure 1.2 

A 
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(a) Parallelogram law 

(b) Triangle law 

figure 1.3 

B 

additional emphasis by using boldface. Both of these representations for vectors 
are used in this text. 

We see that a vector does not possess a unique line of action, because moving 
a vector to a parallel line of action changes neither its magnitude nor its direction. 
In some engineering applications, the definition of a vector is more restrictive to 
include a line of action or even a point of application- see Art. 2.2. 

Equality of Vectors Two vectors A and B are said to be equal, written 
as A = B, if (1) their magnitudes are equal- that is, A = B, and (2) they have the 
same direction. 

Scalar-Vector Multiplication The multiplication of a scalar m and a 
vector A, written as rnA or as Am, is defined as follows. 

1. If m is positive, mA is the vector of magnitude rnA that has the same direction 
as A. 

2. If m is negative, rnA is the vector of magnitude lmiA that is oppositely 
directed to A. 

3. If m = 0, mA (called the null or zero vector) is a vector of zero magnitude 
and arbitrary direction. 

Form = - 1, we see that (- l)A is the vector that has the same magnitude as A 
but is oppositely directed to A. The vector ( -l)A, usually written as -A, is called 
the negative of A. 

Unit Vectors A unit vector is a dimensionless vector with magnitude 1. 
Therefore, if A represents a unit vector (I A I = 1) with the same direction as A, 
we can write 

A=AA 

Tllis representation of a vector often is useful because it separates the magnitude 
A and the direction A of the vector. 

The Parallelogram Law for Addition and the Triangle Law 
The addition of two vectors A and B is defined to be the vector C that results 
from the geometric construction shown in Fig. 1.3(a). Observe that C is the 
diagonal of the parallelogram formed by A and B. The operation depicted in 
Fig. 1.3(a), written as A + B = C, is called the parallelogram law for addition. 
The vectors A and B are referred to as components of C, and C is called the 
resultant of A and B. The process of replacing a resultant with its components 
is called resolution. For example, C in Fig. 1.3(a) is resolved into its components 
A and B. 

An equivalent statement of the parallelogram law is the triangle law, which is 
shown in Fig. 1.3(b). Here the tail of B is placed at the tip of A, and C is the vector 
that completes the triangle, drawn from the tail of A to the tip of B. The result is 
identical if the tail of A is placed at the tip of B and C is drawn from the tail of B 
to the tip of A. 
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1.3: Fundamental Properties or Vectors 13 

Letting E, F, and G represent any three vectors, we have the following two 
important properties (each follows directly from the parallelogram law): 

} Addition is commutative: E + F = F + E 
Addition is associative: E + (F + G) = (E + F) + G 

It is often convenient to find the sum E + F + G (no parentheses are 
needed) by adding the vectors from tip to tail, as shown in Fig. 1.4. The sum of the 
three vectors is seen to be the vector drawn from the tail of the first vector (E) to 
the tip of the last vector (G). This method, called the polygon rule for addition, can 
easily be extended to any number of vectors. 

F 

Figure 1.4 

The subtraction of two vectors A and B, written as A - B, is defined as 
A - B =A + (-B), as shown in Fig. 1.5. 

B 

-B 

Figure 1.5 

Because of the geometric nature of the parallelogram law and the triangle 
law, vector addition can be accomplished graphically. A second technique is to 
determine the relationships between the various magnitudes and angles analyti­
cally by applying the laws of sines and cosines to a sketch of the parallelogram 
(or the triangle)- see Table 1.1. Both the graphical and the analytical methods 
are illustrated in Sample Problem 1.4. 
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14 CHAPTER 1: Introduction to Statics 

Law of sines a b c 

a r b sill a sin f3 sill r 

Law of cosines a2 = b2 + c2 - 2bc cos a p 
b2 = c2 + a2 - 2cacos f3 c 

c2 = a2 + b2 - 2abcosr 

Some words of caution: It is unfortunate that the symbols +, - , and = are 
commonly used in both scalar algebra and vector algebra, because they have 
completely different meanings in the two systems. For example, note the different 
meanings for + and = in the following two equations: A + B = C and 1 + 2 = 3. 
In computer programming, this is known as operator overloading, where the rules 
of the operation depend on the operands involved in the process. Unless you are 
extremely careful, this double meaning for symbols can easily lead to invalid 
expressions- for example, A + 5 (a vector cannot be added to a scalar!) and A = 1 
(a vector cannot equal a scalar!). 
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Sample Problem 1.4 

Figure (a) shows two position vectors of magnitudes A = 60ft and B = 100ft. 
(A position vector is a vector drawn between two points in space.) Determine 
the resultant R = A + B using the following methods: {1} analytically, using the 
triangle law; and {2) graphically. using the triangle law. 

A 

(a) 

Solution 

Part 1 
The first step in the analytical solution is to draw a sketch (approximately to scale) 
of the triangle law. The magnitude and direction of the resultant are then found 
by applying the laws of sines and cosines to the triangle. 

In this problem, the triangle law for the vector addition of A and B is shown 
in Fig. (b). The magnitude R of the resultant and the angle a are the unknowns to 
be determined. Applying the law of cosines, we obtain 

R2 = 602 + 1002 - 2{60){100)cos140° 

which yields R = 151.0 ft. 
The angle a can now be found from the law of sines: 

100 R 
sina sin140° 

SubstitutingR = 151.0 ft and solving fora , we get a = 25.2°. Referring to Fig. (b), we 
seethattheanglethat Rmakeswiththehorizontalis30° + a = 30° + 25.2° = 55.2°. 
Therefore, the resultant of A and B is 

R= 151.0ft 

&5.2° 
Answer 

(b) 
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Part 2 
In the graphical solution, Fig. (b) is drawn to scale with the aid of a ruler and a 
protractor. We first draw the vector A at 30° to the horizontal and then append 
vector B at 70° to the horizontal. The resultant R is then obtained by drawing a 
line from the tail of A to the bead of B. The magnitude of R and the angle it makes 
with the horizontal can now be measured directly from the figure. 

Of course, the results would not be as accurate as those obtained in the ana­
lytical solution. If care is taken in making the drawing, two-digit accuracy is the 
best we can hope for. In this problem we should get R ""' 150 ft. inclined at 55° to 
the horizontal. 

Sample Problem 1.5 

16 

The vertical force P of magnitude 100 kN is applied to the frame shown in Fig. (a). 
Resolve P into components that are parallel to the members AB and AC of the 
truss. 

A 

(a) (b) 

Solution 
The force triangle in Fig. (b) represents the vector addition P = P,.c + P AB· The 
angles in the figure were derived from the inclinations of AC and AB with the 
vertical: P,.c is inclined at 35° (parallel to AC), and P,.8 is inclined at 70° (parallel 
to AB). Applying the law of sines to the triangle, we obtain 

100 PAR 

sin 35° sin 35° 

which yields for the magnitudes of the components 

PAs = 100.0 kN Poe = 163.8 kN Answer 
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